If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-20=6x
We move all terms to the left:
6x^2-20-(6x)=0
a = 6; b = -6; c = -20;
Δ = b2-4ac
Δ = -62-4·6·(-20)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{129}}{2*6}=\frac{6-2\sqrt{129}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{129}}{2*6}=\frac{6+2\sqrt{129}}{12} $
| 4x+2−2x=10 | | 90=21x+27 | | -10+8k=-58 | | 28=2(6x+2) | | j-92=-85 | | 6(x+8)=2(x+4)+4x | | 15=-4+w | | 43x-24=24 | | v^2=93 | | 3x-29-6x-7=180 | | 3(x+1)-18x=108 | | (x-2)^2+6^2=x^2 | | -3n+1=40 | | n-87=-56 | | 4320=x-1465 | | 10=13-x | | 7x+2+x=1/4(2x+1/4) | | 7+20x=8x | | y/4=4+5/8 | | 6=z/43 | | X+18+2x=60 | | 49.50=9x | | 3x=(7x+9x+3x)/2 | | 19+4.5h=10+5.75h | | 2=1.5x+4 | | (11x-2)(19x+3)(9x+1)=180 | | 84=4q | | 0.5m-2=-10 | | 5=9+x/4 | | 1.75+0.45m=13.90 | | 8=b/4+3 | | 12x-6=12x+6 |